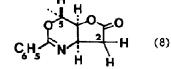

Tetrahedron Letters Vol. 21, pp 2999 - 3000 ©Pergamon Press Ltd. 1980. Printed in Great Britain

SYNTHESIS OF N-BENZOYL-L-RISTOSAMINE

Giovanni Fronza, Claudio Fuganti and Piero Grasselli Istituto di Chimica del Politecnico Centro del CNR per la Chimica delle Sostanze Organiche Naturali, 20133 Milano, Italy

The synthesis of N-benzoyl-L-ristosamine (7) from natural tartaric acid through the intermediacy of the δ -xylo and γ -ribo lactones (4) and (6) is reported

We reported obtaining from the C_4 chiral compound (1) and from its enantiomer, prepared from natural tartaric acid and from L-threenine (or the unnatural form of tartaric acid), respectively, the N-benzoyl derivate of 3-<u>epi-L</u>-daunosamine (2,3,6-trideoxy-3-amino-<u>L-xylo</u>-hexose) (5) and its <u>D</u>-enantiomer¹. Key intermediates in the synthesis were the $C_6 \alpha,\beta$ -unsaturated ester (2), the β -amino ester (3) and the δ -lactone (4). The <u>D</u>-enantiomer of the <u>xylo</u> lactone (4) has been converted into the <u>L-arabino</u> and <u>L-lyxo</u> configurational isomers. From these compounds the N-trifluoroacetyl derivates of <u>L-acosamine</u> and <u>L-daunosamine</u> have been prepared².



Now we refer to the synthesis of the N-benzoyl derivate of <u>L</u>-ristosamine (7), the amino deoxy sugar component of the antibiotic ristomycin³, with the <u>L-ribo</u> configuration, from (1) through the key intermediacy of the <u>L-xylo- δ -lactone (4)</u>. In this way, from natural and unnatural tartaric acid, the <u>L-</u> and <u>D</u>-enantiomeric forms of the four configurational isomers of 2,3,6-trideoxy-3-amino-hexose can be formally prepared, thus increasing the significance of C₄ chiral intermediates to the synthesis of the optically active forms of natural products^{2,4}

Thus, the δ -lactone (4) was converted into the 4-0-mesyl derivate under standard conditions in 80% yield. The mesylate, upon boiling with aqueous sodium acetate gave rise, in '75% yield, to the γ -lactone (6), m.p. 149°, $\left[\alpha\right]_{D}^{20}$ +37° (C 0.95,EtOH). Its structure rests on ¹H-m.m.r. studies (Table) and comparison of these data with those of the other configurationally isomeric γ -lactones.^{1,2} Compound (6) upon DIBAH reduction in THF at -40°C yielded (65%) N-benzoyl-Lristosamine (7), m.p. 130-132°C, $\left[\alpha\right]_{D}^{20}$ -12° (10 min)(c 1,EtOH), well in agreement with the literature values. The ¹H-n.m.r. spectrum of (7) requires some comments. Soon after the solution in DMSO, the β -anomer (7a) represents ca. 60% of the α - β mixture. Within one day the equilibrium value of ca. 50% is reached. The stereochemical assignement of the two anomers is made on the basis of the upfield shift undergone by the protons syn to a vicinal substituent in a pentacyclic system⁵. In the β -anomer (7a) the H-2 proton 'sees' at its side two vicinal substituents, and the chemical shift difference between H-2 and H-2' is 0.61 ppm. The H-2 and H-2' in the α -anomer (7b) have only one syn vicinal substituent: with respect to the β -anomer H-2 and H-2' go downfield and upfield, respectively, showing exactly the same chemical shift. Apart from the substituent influence on vicinal protons, it is known⁵ that a substituent exerts a deshielding effect on the cis- γ -protons in the 5-membered rings. We can observe that going from the β to the α anomer H-3 is deshielded by 0.24 ppm and H-4 is shielded by about 0.21 ppm; this observation strongly supports a trans relationship between H-3 and H-4.

TABLE: ¹ H-n.m.r. data									
		(6))	(7a)			(7b)		
H-1				5.43	J(1,2)	2.1	5.42	J(1,2)+ J(1,2')	7.2
H-2	2.54	J(2,2')	18.3	1.69	J(1,2')	4.9	· 2.06	J(2,3)+ J(2',3)	16.0
H-2"	2.96	J(2,3)	4.0	2.30	J(2,2')	13.2	2.06		
H−3	4.73	J(2',3)	9.3	4.44	J(2,3)	4.5	4.68		
H-4	4.34	J(3,4)	3.1	3.91	J(2',3)	8.8	~ 3.704		
H-5	3.91	J(4,5)	3.1	~ 3.70 ⁴	J(3,4)	4.8	~ 3.70^		
^{СН} 3	1.17	J(5,6)	6.6	1.07	J(4,5)	4.8	1.10		
)₩-1				6.32	J(5,6)	6.4	6.32	J(5,6)	6.0
он−5	5.14	J(5,0H)	4.5	4.63	J(1,0H)	5.3	4.54	J(1,0H)	5.3
H	8.97	J(3,NH)	7.5	8.37	J(5,OH)	4.5	8.55	J(5,0H)	3.0
					J(3,NH)	7.6		J(3,NH)	8.0

* Solvent: (GD_) SO; chemical shifts in ppm from int. TMS; J in Hz * Since H-2 and H-2' of (7b) have the same chemical shift, H-1, H-2, H-2' and H-3, H H-2' are deceptively simple ABX systems, and only the value J(AX)+ J(BX) can be gi ^A Partially overlapped signals

Under the conditions in which the 5-0-mesyl derivate of the γ -xylo N-benzoyl lactone isomer of (4) gave (8), $\left[\alpha\right]_{D}^{20}$ -4.4° (c 1, EtOH), the 4-0-mesylate of (4) gave (6) as sole react product. The 1 H-n.m.r. data of (8) are (DMSO-d₆): δ 2.47 (J(17); 3.18 (J(2,3) 1.8); 4.21 (J(2',3) 7.3); 4.57 (J3,4) 4.5); 4.47 (J(4,5) 2.7); 1.35 (J(5,6) 6

¹G.Fronza, C.Fuganti, P.Grasselli, G.Marinoni, Tetrahedron Letters, 1979,3888 ²G.Fronza, C.Fuganti, P.Grasselli, <u>J.Chem.Soc.Chem.Comm</u>.1980, in press ³ R.Bognar, F.Sztaricska M.E.Munk, J.Tamas, J.Org.Chem., 1974,2971 ⁴ E.Hungerblihler, D.Seebach, D.Wasmuth, <u>Angew.Chew</u> ⁵ M.Anteunis, D.Danneels, <u>Org.Magn.Res.</u>, 1975,345 (Int.Eng.Ed.),1979, 958

(Received in UK 23 May 1980)